

Instrumentation of WebView based on Cordova
Created by Martin Ceska

Last changes on 29 May 2020

If you have any questions, please feel free to contact us at support@suite.st p 1

This guide is meant for all Suitest users that plan to test the HTML app used on Android devices

through WebView and are using Cordova for WebView app creation.

Introduction

In order to instrument HTML hosted (WebView) applications with Suitest, there are 3 distinct steps

needed (as described in our docs):

1. Adding Suitest Instrumentation Library (shortly IL) as dependency (and few other 3rd party

libraries)

2. Instrumenting the Application class

3. Instrumenting the WebView(s) that display the content.

Apart from that, every webpage also needs to contain a small javascript which will instrument the

webpage, allowing it to be tested with Suitest.

NOTE: This assumes that you do not have any Android plugin added and will be adding a new one.

However, if you already have Android plugin added, you should have no problem following this guide

and just modifying/adding the respective files. For the purpose of this guide, the custom Android

plugin is placed inside SuitestApplication/ folder. If you already have Android plugin folder, or you

decide to name yours differently, just replace SuitestApplication/ with <yourAndroidPluginFolder>/.

1. Adding Suitest IL library dependency

1.1. Add custom Android plugin to instrument the Cordova Android app with Suitest IL

If you already have an Android plugin successfully added to your Cordova project, you should be able

to completely skip this step, and continue from #1.2.

• In case plugman is not installed, install it:

npm -g install plugman

• Create custom plugin with plugman create command, e.g:

plugman create -name SuitestApplication -plugin_id st.suite.il -

plugin_version 1.0.0

• Navigate into the newly created folder (cd SuitestApplication), add Android platform:

plugman platform add --platform_name android

• Create package.json, so that the plugin can be added into parent Cordova project. When

prompted, either confirm the default values by hitting enter, or type in whatever you feel

appropriate.

plugman createpackagejson ./ name: (SuitestApplication)

1.2. Adding IL library archives & custom build.gradle

• Within the /SuitestApplication folder (or within the folder of your already existing Android plugin),

create new folder for .aar archives, for example libs-aar.

mailto:support@suite.st
https://suite.st/docs/application/more-configuration-options/

Instrumentation of WebView based on Cordova
Created by Martin Ceska

Last changes on 29 May 2020

If you have any questions, please feel free to contact us at support@suite.st p 2

• Copy both IL archives (SuitestIL.aar and SuitestILproduction.aar) into

/SuitestApplication/libs-aar/

• Create new file build.gradle inside the plugin's folder, more precisely

SuitestApplication/src/android/build.gradle. This gradle file will add all the

dependencies needed for Suitest IL. Copy-paste the following code to make the content look like

this:

repositories {

jcenter()

flatDir {

dirs 'src/main/libs'

}

}

dependencies {

debugImplementation 'com.android.support:appcompat-v7:25.2.0'

debugImplementation 'com.google.code.gson:gson:2.8.0'

debugImplementation(name:'SuitestIL', ext:'aar')

releaseImplementation(name:'SuitestILproduction', ext:'aar')

}

(Alternatively, you can modify contents of yourPlugin/src/android/build.gradle file if you already have

Android plugin).

NOTE: we will soon migrate from appcompat support lib to AndroidX. The dependency will need to

be updated then.

1.3. Use IL library archives and custom build.gradle

• Modify contents of SuitestApplication/plugin.xml - add following lines inside

<platform name="android"> in order to use our custom build.gradle and bundle the .aar

archives into resulting package:

<platform name="android">

...

<framework src="src/android/build.gradle" custom="true"

type="gradleReference" />

<resource-file src="libs-aar/SuitestIL.aar"

target="libs/SuitestIL.aar" />

<resource-file src="libs-aar/SuitestILproduction.aar"

target="libs/SuitestILproduction.aar" />

</platform>

2. Create custom Suitest-instrumented Application class

By now, you should have a SuitestApplication.java class within

/SuitestApplication/src/android/ folder. It extends CordovaPlugin, but we do not need that - we

will modify the class to extend android.app.Application:

• Modify contents of SuitestApplication/src/android/SuitestApplication.java

class to extend Application class, and add IL instrumentation code. Resulting class should look

something like this:

mailto:support@suite.st

Instrumentation of WebView based on Cordova
Created by Martin Ceska

Last changes on 29 May 2020

If you have any questions, please feel free to contact us at support@suite.st p 3

package st.suite.il;

import android.app.Application;

import

st.suite.android.suitestinstrumentalservice.SuitestInstrumentalApplicat

ion;

public class SuitestApplication extends Application {

@Override

public void onCreate() {

super.onCreate();

SuitestInstrumentalApplication.webViewInit(this);

}

}

• Within /SuitestApplication folder, update plugin.xml in order to make AndroidManifest.xml

use our custom Application class - inside the <platform name="android"> tag, add the

following lines:

<platform name="android">

...

<edit-config file="AndroidManifest.xml" target="/manifest/application"

mode="merge">

<application android:name="st.suite.il.SuitestApplication" />

</edit-config>

</platform>

• (If you already have Android plugin, just create a new Application class at

/yourPlugin/src/android/ folder and use the code from above. Make sure to use correct package

name and also make sure to use correct values for the <edit-config> tag inside

/yourPlugin/plugin.xml file, as shown above.

• Increase minSdk to 21 to match Suitest IL's requirements. In the root of the Cordova project,

modify config.xml: inside <platform name="android"> tag, add following line:

<platform name="android">

...

<preference name="android-minSdkVersion" value="21" />

</platform>

3. Instrumenting WebView that Cordova uses to display the

applications’s webpage.

We need to modify contents of /platforms/android/app/src/main/java/your-package-

path/MainActivity.java, and instrument the WebView that Cordova uses to display content.

• It is done by calling SuitestWebViewInstrumentation.instrument(webView);. For best

results with Suitest, the WebView should be instrumented before any content is loaded into

WebView.

mailto:support@suite.st

Instrumentation of WebView based on Cordova
Created by Martin Ceska

Last changes on 29 May 2020

If you have any questions, please feel free to contact us at support@suite.st p 4

• Contents of this file could be overwritten by Cordova. Specifically this happen if you remove and

then again add Android platform to your project (cordova platform remove android,

cordova platform add android). If this happens, you will have to insert the following code

again.

• The resulting class should look something like this (do not forget about the import statements):

package some.package; //leave your default value here

import android.content.pm.ApplicationInfo;

import android.os.Bundle;

import android.util.Log;

import android.webkit.WebView;

import org.apache.cordova.*;

import

st.suite.android.suitestinstrumentalservice.view.web.SuitestWebViewInst

rumentation;

public class MainActivity extends CordovaActivity {

@Override

 public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// enable Cordova apps to be started in the background

Bundle extras = getIntent().getExtras();

if (extras != null && extras.getBoolean("cdvStartInBackground",

false)) {

moveTaskToBack(true);

}

// start of Suitest instrumentation

if (0 != (getApplicationInfo().flags &

ApplicationInfo.FLAG_DEBUGGABLE)) { //use only for debug builds

//call to ensure appView is created and initialized

init();

try {

SuitestWebViewInstrumentation.instrument((WebView)

appView.getView());

} catch (ClassCastException e) {

Log.e(this.getClass().getSimpleName(), "Suitest instrument

WebView FAILED!", e);

}

}

// end of Suitest instrumentation

// Set by <content src="index.html" /> in config.xml

loadUrl(launchUrl);

}

}

mailto:support@suite.st

Instrumentation of WebView based on Cordova
Created by Martin Ceska

Last changes on 29 May 2020

If you have any questions, please feel free to contact us at support@suite.st p 5

4. Add the new custom Android plugin into parent project

• In the root directory of the project, add the newly created plugin

cordova plugin add SuitestApplication

• IMPORTANT: every time you update your Java code (as well as most of the other parts of the

plugin), you actually have to remove the plugin and re-add, in order to update the source code

with the latest changes. You can do it with following commands:

cordova plugin remove st.suite.il

cordova plugin add SuitestApplication

5. Instrument the webpage displayed by Cordova

Suitest instrumentation javascript has to be added to every webpage that is to be tested.

• By default, Cordova will use /www/index.html to display application content. Add the following

code into <head> tag, ideally as the very first element:

<head>

<script src="https://the.suite.st/app/your-app-id.js"></script>

...

</head>

• By default, the /www/index.html page contains the following line:

<meta http-equiv="Content-Security-Policy" content="default-src 'self'

data: gap: https://ssl.gstatic.com 'unsafe-eval'; style-src 'self'

'unsafe-inline'; media-src *; img-src 'self' data: content:;">

• However 2 rules prevent Suitest from working/displaying correctly, more precisely default-src

'self' and img-src 'self'. Removing them should make Suitest run smoothly.

Now you can build the application, and upload the apk file

/platforms/android/app/build/outputs/apk/debug/app-debug.apk to Suitest.

IMPORTANT: When you upload the .apk build into Suitest, do not forget to check "This is an HTML

based application", as shown here in our docs.

IMPORTANT: Every time you upload new build to Suitest, you have to increase the versionCode of

your .apk file, otherwise the previous build will be used. To specify android versionCode, add

android-versionCode to <widget> tag inside config.xml file in the root of your project, for

example like this:

<?xml version='1.0' encoding='utf-8'?>

<widget id="your.id.name" version="1.0.0" android-versionCode="3"

xmlns="http://www.w3.org/ns/widgets"

xmlns:cdv="http://cordova.apache.org/ns/1.0">

...

mailto:support@suite.st
https://suite.st/docs/application/instrumenting-android-tv-apps/%23uploading-the-build-to-suitest

Instrumentation of WebView based on Cordova
Created by Martin Ceska

Last changes on 29 May 2020

If you have any questions, please feel free to contact us at support@suite.st p 6

Bonus: Using cleartext traffic in Android app

If the app uses any cleartext traffic, it should be explicitly enabled.

Please note that Suitest instrumentation should work with both http and https in the script (both

<script src="http://the.suite.st/app/your-app-id.js"></script> and <script

src="https://the.suite.st/app/your-app-id.js"></script> are ok.). If you decide to

use https, you should however make sure that cleartext is enabled, otherwise Suitest will not run on

Android 8+ devices.

Starting with Android 8, cleartext traffic is disabled by default. Enabling cleartext can be done either

by specifying android:usesCleartextTraffic="true" in <application> tag inside

AndroidManifest.xml (this enables all cleartext traffic), or for more specific approach, add

custom network security config file, and specify it with android:networkSecurityConfig

property inside <application> tag as well (see here).

To do the former, add following lines into /SuitestApplication/plugin.xml file inside

<platform name="android"> tag:

...

<platform name="android">

...

<edit-config file="AndroidManifest.xml" target="/manifest/application"

mode="merge">

<application android:usesCleartextTraffic="true"/>

</edit-config>

...

</platform>

mailto:support@suite.st
https://developer.android.com/training/articles/security-config

